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Kinetics of a magnetic fluid phase separation induced by an external magnetic field
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We study the processes of nucleation and subsequent evolution of a system of droplike aggregates sus-
pended in a macroscopically homogeneous magnetic fluid made metastable by strengthening of an external
magnetic field. The growing aggregates are highly elongated ellipsoidal shaped and are distributed over vol-
ume. Expressions for the growth rate of an aggregate, the critical nucleus volume, and the nucleation rate have
been obtained. The aggregate distribution density is governed by a kinetic equation with neglect of fluctuations
in the growth rate of a single aggregate. The approximate solutions for supersaturation and diverse character-
istics of the distribution density have been found as functions of time. The kinetics of evolution of a system of
ellipsoidal aggregates in the presence of a magnetic field differs essentially from the corresponding kinetics of
a system of spherical drople{sS1063-651X%97)13605-4

PACS numbd(s): 64.60.Qb, 64.60.My, 75.50.Mm

[. INTRODUCTION magnetic fluidg13—2Q have demonstrated that, in a system
of particles interacting through a noncentral dipole-dipole
Magnetic fluids(ferrofluids, ferrocolloidy stable colloi-  potential, the condensation may occur in the absence of a
dal suspensions of the one-domain particles of ferro- andnagnetic field at a temperature below a certain critical one,
ferrimagnetic materials in liquids, offer unique propertiesthe latter is dependent on the value of the ferroparticle mag-
[1-3] that have attracted the attention of researchers. Theetic momentsi.e., on the diameters of the magnetic cores
small sizes of dispersed ferroparticleiameterd~10 nm  This is associated with the fact that a noncentral dipole-
provide the particles with an inherent magnetic mommmf  dipole interaction of magnetic moments of particles displays
the constant value. The stabilization of suspension is usualligself on the whole as an effective interparticle attraction. In
obtained by coating the magnetic grains with a surfactan& uniform external field this effective attraction strengthens
layer which allows us to neglect the influence of the van det16—18,2Q, thus a magnetic field stimulates the process of
Waals forces[1,2]. As a result, the ferroparticles interact phase separation in magnetic fluids. The equilibrium phase
with each other through the steric repulsion of surfactantliagrams of ferrocolloids, under the conditions of such a
coats and the dipole-dipole interaction of particle magnetianagnetic field induced phase separation, were experimen-
moments. The latter interaction is responsible for the phastally studied in Refs[6—8,21,22 and theoretically calculated
separation of magnetic fluid4—9], accompanied by the ex- in Refs.[16-18,2Q. It was shown that even weak and mod-
istence of droplike aggregates. These aggregates can be carate external fields~30—-300 O¢ may result in the break
sidered as fluid$6,7,9 with an interfacial tension surface, of the thermodynamic stability of a ferrocolloid. During the
representing, essentially, a highly concentrated ferrocolloidgbhase separation under the presence of a magnetic field the
phase suspended in a dilute matrix in the form of dropletoccurring droplike aggregates are spindle shaped and
[4,5,7,9. Typical dimensions of droplike aggregates are ofstretched along the external field direction.

the order of, approximately, 1-gm, i.e., the number of In the present research we should focus our attention on
ferroparticles comprising the aggregate is approximatelyhe problem of the theoretical description of the kinetic pro-
10*-10°. cess of ferrocolloid phase separation from a metastable state

From the viewpoint of statistical mechanics the existencénduced by a uniform magnetic field. The break of thermo-
of droplike aggregates may be considered as a result of thdynamic stability of a magnetic fluid is followed by the
violation of thermodynamic stability in a system of dispersedorigination of critical nuclei of a new phase, by their trans-
particles that leads to their condensatjd0,11]. Therefore, formation into macroscopic droplike aggregates and by the
phase separation in magnetic fluids is treated further as a firsnsuing growth of those aggregates in a metastable environ-
order phase transition of the “colloidal gas — colloidal lig- ment.
uid” type. Two main reasons for the separation of colloidal As far as nucleation is concerned, a relevant theory can be
systems are knowf9-12], a decrease in temperature or anput forward by following common trends specific to the
increase in electrolyte concentration in ionic stabilized distheory of nucleation in molecular systeria3]. Recently
persions. In magnetic fluids still another type of phase sepasuch a theory has been worked out for colloids in R24].
ration is experimentally observed: phase separation in a mag-he nucleation kinetics essentially depend on the shape of
netic field[4—8] under isothermal conditions. In this case, atemerging nuclei. An analysis, presented in Sec. Il, shows
equilibrium conditions, a uniform magnetic field increase isthat even in weak magnetic fields the shape of a droplike
equivalent to an effective temperature lowering. Such pheaggregate with good accuracy may be approximated by a
nomenon looks like a nontrivial phase transition of the con-highly elongated ellipsoid of revolution, the elongation of
densation type, induced by an external magnetic field. which is dependent on the aggregate volume. The aggregate

In principle, existing statistical thermodynamic models of growth rate, in a supersaturated ferrocolloidal environment,
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is determined in Sec. Il under the assumption that thismined under the conditions of its energy minimum. Experi-

growth is limited by a diffusional transport of ferroparticles mental studie46,7,30 and theoretical analysg81] have

to the aggregate surface. On the basis of the classicalemonstrated that the magnetic fluid drop in an external field
Volmer-Frenkel-Zel'dovich nucleation theory in Sec. 1V, the is spindle shaped. A simple ellipsoidal approximation also

expressions for the nucleation rate and the critical aggregaghows good agreement with experimental observations
volume are obtained. [6,7,3Q in weak-to-moderate magnetic fields.

The necessity of allowing simultaneously for the nucle- By using the results of Ref6] we consider the droplike
ation and the growth of new phase elements has been aaggregate as an ellipsoid of revolution stretched along the
knowledged in Refs[25,26. Such a combined process of external field direction. This shape is dependent on the bal-
the growth of existing aggregates and of the initiation ofance between the surface enefgyand the excess magnetic
additional nuclei in the circumstance of permanently reducenergyF,,. The energy- is determined by the values of the
ing metastability of the parent magnetic fluid, is covered byaggregate surfacg and the interfacial tensionr. The latter
the so-called intermediate stage of phase transition. Amlepends both on the magnetic field strength and on the local
analysis of this stage is greatly complicated by the presencewutual orientation of the surface and vectdy (Refs.[30—
of negative feedback between the process of aggregate foB2]). However, this dependence reveals at large strength of
mation and growth dependent on a transient degree of metan external field in the vicinity of the saturation magnetiza-
stability (e.g., a value of the supersaturafipand that of the tion of magnetic fluid(Ref. [30]). Therefore, parameter
gradual reducing of metastability by the growing aggregatesill be treated as an effective interfacial tension which re-
[27,28. Proposed in Ref28] a method for solving the prob- mains constant along the surface of the droplike aggregate
lem has been applied to study the evolution of spherical

droplike aggregates in colloid®9] in the absence of the . _J' J - VAR L arcsin/1—c?
external field. A similar approach, based on the analysis of Fs= Sff S¥oo=cemo 4 c +—Cm :

the kinetic equation for volume distribution function of )
highly elongated ellipsoidal aggregates, is used in Sec.

V-IX. An integral equation, describing the metastability re- yaore c=p/a is the ratio between the ellipsoid semiaxes
duction with time, is obtained in Sec. VI and approximately 5,44

solved in Sec. VII. The evolution of the integral characteris-  1he excess magnetic enerBy, is connected with the fact
tics of the aggregate system and of the aggregate distributio 5t yolumeV characterized by magnetic permeability is

function are investigated in Secs. VIIl and IX, respectively. placed in a medium characterized by magnetic permeability
We shall consider a sterically stabilized magnetic fluid (44> ). The internal magnetic fielé, is uniform in
containing identical spherical ferroparticles, suspended in 51' n= e 2

9 . L e case of the ellipsoidal shape of the volusheThus for
neutral liquid carrier. The ferrocolloid is supposed to be ther-the energyF,, we obtain, according to Ref33],

modynamically stable in the absence of a magnetic field. But

if a weak uniform external magnetic field, is present, a VH?2 _

. . . o mi(pn—m)
macrocsopically homogeneous state of the magnetic fluid be- Fn=— 8 ,
comes unstable and, as a consequence, the magnetic fluid 7 (= )
with the initial volume particle concentratiapy, is bound to 5 .
be separated into two homogeneous phases characterized by c 1+yl-c

the equilibrium valuese, and ¢, of the concentration n

(e1<¢) . At the thermodynamic equilibrium state the co- 1=vime
existing phases are separated by a plane interfacial surfaggheren is the demagnetization factor.
which is parallel to an external field. In the quasiequilibrium state the aggregate shape may be
In what follows, we are going to study the kinetics of determined under the condition of minimization of total en-
phase separation of a dilute magnetic fluigh$1). In SO  ergy with respect to semiaxis ratiod(F s+ F,,)/dc=0. The
doing, the inequality for concentrationg and ¢, is valid  rather complicated expression of quasiequilibrium shape fac-
(¢1<@o<¢). Hence, the magnetizatiov, of the low con-  tor ¢ upon the dimensionless magnetic field and aggregate
centrated phase may be neglected as compared with the magslume is presented in Reff30]. The distinctive feature of
netizationM,, of the high concentrated phase!((>M). In  this expression is the occurrence of hysteresis I§6pg on
closing, we shall consider the separation in a weak magnetithe curvesc(V) in the case of a sufficiently large value of
field, so the ferrocolloid magnetization is directly propor- 4, (u, /1,>20). In this area the magnetic fluid drop under-
tional to the field strength. goes a jumplike elongation, the main features of such a pro-
cess have been experimentally studied in Réfs,30. The
analysis of the dependencg¢V) shows that the ellipsoidal
drop becomes highly elongatedstb, c<1) if the combi-
nation H,V®s1? exceeds a certain value which is approxi-
Let us consider a single droplike aggregate placed in anately equal to 1. Thus, for typical values of interfacial ten-
magnetic fluid under separation conditions. It seems naturaion o~10"* erg/cnt [6,7,30 and weak magnetic fields
to suppose that the relaxation of an aggregate shape to th#,~10 Oe we obtain the volum¥~1-10x10 ¥ cm?3.
most energetical advantageous one is very quick as conFhe latter is of the order of the ferroparticle volume
pared with the change of the aggregate volwh@hus, the v(d~10 nm,v~10 nn). In consequence, the droplike
shape of the aggregate with a given voluvenay be deter- aggregates in the magnetic fluid may be regarded as highly

)—Nﬁl, W)

2(1_ C2)3/2\‘ In

Il. QUASIEQUILIBRIUM SHAPE
OF DROPLIKE AGGREGATE
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elongated ellipsoids of revolution. In so doing, the relation-The corresponding magnetization component in the low con-
ship between aggregate volurdeand semiaxis ratic takes  centration phasd,, can be neglected in comparison with

the simple asymptotic form Moy .
The curvaturek and normal magnetizatiod ,,, represent
B A7lg® wP rather complex functions of the surface coordinates. In order
V=~ cTinc[?" B= 3HE (pn— )’ c<1l, V>B. to simplify the mathematical structure of E@6) let us make

3) some obvious assumptions. The ellipsoid elongation coin-
cides with the direction of magnetization vectdr,. There-

One can see from asymptotic equati(® that a large in- fore, in the case of the highly elongated aggregate, the con-

crease of aggregate volurheis accompanied with a small tribution of the normal to the surface componéfj, to the
decrease of ratig. mechanical equilibrium conditiof6), as a first approxima-

tion, may be considered as negligibly small. This approxima-
tion breaks down near the tips of the droplet where the lines
of a local magnetic field are modified. But the estimation

Because the potential barrier preventing a new partic|@iven below shows that the tip areas make the contribution to
from adhering to an aggregate is hardly expected to be largéhe aggregate growth rate of the ordercsf1. And so, the
the growth of the aggregate with volume particle concentra@ggregate growth is controled mainly by the ferroparticle ab-
tion ¢, is likely to be limited by the rate of the diffusional sorption on the ellipsoid side surface.

Ill. A MODEL OF THE GROWTH OF AGGREGATES

transport of particles to the aggregate surface. Then By taking for granted that the concentration shifts due to
the interface curvature are relatively small,d¢,|
dv _ :|<P1_<P||<<P[,|5<P2|:|<P2_<P|||<(P|| . and by carrying
P2y T~ SJ -ds, (49 out an averaging procedure over the interface, we arrive at a

set of linear algebraic equations to find the concentration

- . L shifts. Making simple calculations we obtain the expressions
wherej is the ferroparticle flux density in the metastablefor quasiequilibrium averaged concentrations and ¢,

phase. The characteristic time for establishing a stationar%hiCh are constant along the aggregate surface and can be
concentration field in the vicinity of the growing aggregate isused in the boundary proble)
e

evidently much less than the time required to change th

aggregate volume substantially. This means that the ferropar- U
ticles diffusion can be considered in the quasistationary ap- <P1:<P|+V—1r, Pl I
proximation
.. . (91//3@”
divj=0, j=-D(Ve+eVu), ¢l.=¢., ¢ls=¢1, U= . (7
S (@PTagn)aviaen —(oPTagn (aviaey)

KT sinh ) mH Here o is an effective parameter which appears in HG$.
=—  u=-— In—l, alz_ly during averaging procedure over the interface, this parameter
3myd ay KT will be determined later.
Due to the ellipsoidal shape of the aggregate it is conve-
where 7 stands for the viscosity of the pure matrix liquid, nient to solve the boundary problefs) with the help of
D is the coefficient of mutual Brownian diffusion of the ellipsoidal coordinatef33,34). Then let us analyze this prob-
particles down a concentration gradient, the current concenem taking the highly elongated shape of the aggregate into
tration of a metastable phage. may be regarded as a slow account. In this case the magnetic field inside the aggregate
function of time. The one-particle Langevin free energy ofapproximately equals to the external figig~H,. Accord-
an ideal paramagnetic gakT is dependent on a local value ing to this, the magnetic field outside the aggregate is also
of magnetic field strengtlid; in low concentration phase, approximately equal to the external oHg~H, on an aver-
and —D¢eVu is the particle flux density caused by the inho- age. In the vicinity of the ellipsoid side surface a magnetic
mogeneities of magnetic field, . field is approximately constanty~ const), so the magnetic
The boundary condition at the aggregate surface containgonvective” flux densityj,=—D @(du/da;)V a; is negli-
the quasiequilibrium concentratias of the diluted phase in  gibly small. The diffusion flux density here is of the order
the vicinity of the aggregate. This concentration can be dej,~D .. /b. The total diffusion flux on the ellipsoid side
termined with the help of the conditions of chemical andsurfacel ,~abj,~D ¢..a. “Convective” flux density is de-
mechanical equilibrium of the aggregate when both theectable only in the vicinity of the ellipsiod apices where
bubble and the magnetic pressures are taken into accountj ~Dg.a/b. Total convective flux on ellipsoid apex sur-
facel ,~j,b?>~Deg..ab. So in the case of the highly elon-
v(e1)=v(@y), P(@1)+0K=P(g,)+27M3,. (6) gated aggregate, the strong inequaligg>1, holds true. On
the basis of such an assumption the magnetic convective flux
Here the ferroparticle chemical potentialand osmotic —D ¢V u allows itself to be neglected as compared with dif-
pressureP are regarded as functions of the concentration fusional flux —DVe. This simplification is obviously valid
of the particles by volumeK is the curvature of the inter- for dilute metastable magnetic fluiding,|>|In(sinha/c)|.
face, andM,, is the normal to the surface component of Thereafter, we obtain the familiar differential equation for
magnetization in high concentration ferrocolloidal phasedetermining the concentration profile in the vicinity of an
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GV whereB is determined in Eq(3) , andc, is the semiaxis
L ratio of the aggregate with critical volumé, . Expression
(10) may be simplified by taking into account that the order
40 of the value of ratioV, /B is about 16 [see Eq(3)]. Then
we may expand function(V) from Eg. (10) into the power
series ovelV, /V. Ultimately, we obtain from Eqs8) and
(10
? 2B LAl
GV)= a(n) 3DAVR
. . Vl/3_vl/3 ( \V; B—1/3
0 2000 V/V. = x —) : (11)
c2HIn(c, 12)|VIE v,
FIG. 1. Dependence of the dimensionless aggregate growth rate
G(V)=(dV/dt)(3/4m)?3¢, 13DAV"? on relative aggregate vol- B= 3 5 _ In2
ume V/V, : curve 1, expressioifll); curve 2, diffusion limited 7 7In(V,/B) In(c,/2)In(V,/B)’
growth rate for spherical dropletG(V)~(V/V,)*3 dots,
numerical solution of Eq¥8) and (3). In(V, /B)>1.

aggregate. This equation is similar to the problem of a di- The accuracy of the expression for growth rété) may
electric ellipsoid placed in an electric fil@3]. By using the  be estimated from Fig. lcurve 1 and dots for the values
solution from Ref[33] and Eqs(7) we get the growth rate V/V, <10* the relative error does not exceed 5%. Curve 2
of a highly elongated ellipsoidal aggregate (Fig. 1) presents the classical growth rate of a spherical drop-
let G(V)~ (V/V, ). The rather convenient expressitir)

13 allows itself to be integrated in order to analyze in explicit
DWA' Vi :<P —¢ c<1. form the aggregate volume evolution with respect to time

o ® VO

dv A 2/3 V1/3_ V1/3
N *
Ll dat 3( 3 )

Here the parametér, means the critical volume of the ag- IV. NUCLEATION KINETICS
gregate nucleus, in the cade>V, the aggregate grows, - . .
otherwise V<V, the aggregate recedes. The quantity h A shiit in the} magnenﬁ fluid frele energg(Ft,) cau_sed by ol
A= ¢..— ¢, plays the role of the absolute supersaturation 01‘t € presenc_e ofa new phase nucleus, may be written as fol-
the parent magnetic fluid. lows [33,35:

The diffusion limited growth rate of an ellipsoidal aggre- 1
gate(8) differs from the well-known classical growth rate of AF= f |:f1((,pl,H1)+—M1(Hl— Ho)}dV (12
a spherical droplef24,35 by the presence of functiof{(c) Vo=V 2
dependent on the semiaxis ratio. In the casel (a=b,

1
spherg this function must get the valug1)=1, in the limit + f fo(@p,Ho)+ =My(H,— Ho)}dV
c—0 (a>b) the divergence lavi(c) = 1/c23Inc|— takes v 2
place[see expressiof8)]. The functionf(c) is proprotional —f1(@w,Hg)Vo+ oS,

to the growth ratelV/dt under the conditions of equality of

other parameters. Hence, the more elongated aggregajeref is a free energy density, and, is the total volume
grows more rapidly. It is the reasonably expected resulhs 5 metastable system. In the case of a highly elongated
which is caused by increasing of the aggregate surface d“fa‘ggregate, by using the assumptida~H,~H, (Sec. I,

ing elongation. The depengl/gnce of thelgimensionless 9rowtlle get the expression for minimal work of nucleus formation
rate G(V) = (dV/dt)(3/4m)“ ¢, /I3DAV, ™ upon aggregate |24 35

volume is demonstrated in the Fig. 1. Here the dots present

expression8) with an account of the interrelation between ey KT 23
aggregate volum¥ and semiaxis ratie given by formulas A~ —VE 7A+0K(C)V : (13
3.

In order to get the explicit form oflV/dt as function of \yhere x(c)=S/V?3 The microaggregate will be at quasi-
V itis convenient to use the asymptotic expansion equilibrium if the equalityyA/dV=0 holds true. Hence, this

equality leads to the expression for critical volume

Iny
_Inz= o ~ AT
z—Inz=y, vy ,z(y) y( 1+ y + .9 Vus:E v e oK(c,) »
) ) ) * 3 kT (] A '
After evident calculations we obtain from E)
" a7 qu_Jations(l4) and (3) allow us to_calcul_ate the_ vol_ume of
c=c(V)~c (V_*) Tn(V* /B)} (10 critical nucleusv, and corresponding ratio of ellipsoid semi-
*\ v In(viB) | ' axisc, .
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A separating magnetic fluid is characterized by the fol-where the physical meaning &f is that of a relative activa-
lowing typical values of parameters: ferroparticle diametertion energy for the formation of a single critical nucleus re-
d~10-20 nm; interfacial tensionr~(5-10%x10 % erg/ ferred to the actual supersaturation. In the case of spherical
cn? [6,7,9,30-32 external field strengttid,~10-100 Oe; nucleix(c, )= (36m)*° the nucleation ratél7) becomes the
volume concentrations of coexisting phaggs-0.01-0.05, classical one. Using the typical values of parameters in Eq.

o ~0.2-0.4; magnetic permeabilities of phaggs-1-2, (17) gives us the order of value of activation energy
uy ~20-40[7,20,36; and temperatur@ ~ 300 K. E~10-50. Taking into account the dependences of
Thus, for real degrees of supersaturatién-10"2 we ¢ ,¢, ,C, on magnetic fieldH,, the analysis of Eq(17)

obtain the values of critical nucleus volumé, ~(100— comes to the conclusion that nucleation rdtencreases

1000 v and the semiaxis ratio, ~0.04—0.07. The critical sharply under the strengthening of an external field. In other
aggregate contains several tens or hundreds of ferroparticlegords, the process of phase separation in magnetic fluids
and is high elongatedc(, <1). It should be noted that criti- goes on more rapidly in the presence of a higher magnetic
cal volume is a drastically decreasing function of magnetidield. This result is confirmed by all known experimental
field strength. evidence§4-9,21,22,30
Expressiong14) and (8) must evidently lead to coincid- Expressiong8) and (11) for the aggregate growth rate
ing values of critical volumeV, . Doing so, the effective dV/dt, Eq.(14) for the critical nucleus volum¥, and Egs.
averaged parameter (7) may be determined. By expanding (16) and (17) for the nucleation ratd completely describe
A(VY3) in Taylor a series near the poikt*=V3 we ob-  the kinetics of the phase separation process at the nucleation
tain, accurately to terms of the second order in the supersat§tage. In order to illustrate the results obtained we choose the
ration inclusively, an expression following parameters as meaningful representatives of prop-
erties of the nucleation process in magnetic fluids. First, the
TK(Cy) g 13 B2 nucleation rate is determined for the largest part by a dimen-
~—3 Vi k(G- (19 sionless activation enerd [see Eq.(17)] which offers an
effective height of the potential barrier to be overcome by a
for the minimal work necessary to form a nucleus whichnucleus to ensure its subsequent growth. Second, a dimen-
differs from the classical one by the presencec(d, ) . The  sionless volume/, /v and semiaxis ratie, of the critical
latter represents the slow function g, . microaggregate, as well as the total number of partibles
Equation(15) strikingly resembles a familiar expression being contained in that microaggregate, are of great signifi-
of the classical Zel'dovich’s theory of nucleatif85]. When ~ cance. These parameters depend, above all, upon the initial
building this relation, both spontaneous origination of initial Supersaturatiot o= ¢o— ¢, of the original magnetic fluid.
nuclei and the probability of their passing over the critical Dependence of the mentioned parameters on the external
potential barrier can be treated quite similarly to the treatfield strengthH, is presented in Table I. Equilibrium con-
ment specific to molecular systems. Omitting standard calcucentrationsg, and ¢, of coexisting ferrocolloidal phases
lation, we are able to write a conclusive expression of thevere determined for variousl, on the basis of first-order

nucleation rate afg24,35 hard sphere perturbation thedry7,18,20,3& For given ini-
tial concentratior(for example,po=0.045) strengthening of
3 C(p,(p” kT )1’2 i 1 dv a magnetic field leads to an appreciable increase in super-
~~ 07 L ok(e,) V':C* ﬁ/ua_vi 3 gt saturation. Respectively, the critical volume, number of par-

ticles per critical aggregate, and activation energy provide
Tr(Cy) o thg sh_arply decreasing functions of an external field s.tren.gth.
Xex;{ - TV* ) (16)  This is fully understandable because a magnetic field
strengthening means an increase in the degree of metastabil-
ity of the parent magnetic fluid which lowers the volume of
itical nucleus and raises the probability of its formation.
evertheless, the height of the energy barrier is such as to
yield rather large values & at reasonable supersaturations.
5Both V, /v andN, are also large compared with unity, so
}hat the critical microaggregate contains tens or hundreds of
articles when the supersaturation is sufficiently low.

C being a numerical coefficient which could not be ex-
pressed in terms of macroscopical variables and paramete
in principle. Formula(16) defines the mean number of su-
percritical nuclei arising during unit time per unit volume of
a magnetic fluid and is subject to the common restriction
characteristic of the theory of generation of stable molecula
nuclei of a new phase by Zel'dovich. As in the last case, thid
formula is of logarithmic accuracy since the factor cannot be
expressed through macroscopic parameters and so remains V. INTERMEDIATE STAGE: BASIC EQUATIONS
undeterminable. It is obvious, nevertheless, that the influence

of the supersaturation on the nucleation rate is controlled by L&t us next study the evolution of a system of droplike
an exponential factor ellipsoidal aggregates suspended in a macroscopically homo-

geneous metastable magnetic fluid during the intermediate
4lok(c))? o \2 stage of phase transition under the conditions when both the
J~Aexd —E(A)], EQ)=og—=| |—x] - reduction in metastabilitythe decrease in the parent ferro-
colloid supersaturatiorand the continuing initiation of new
4 nuclei in the metastable surroundings are taken into account.
. C <1, (17) The growing aggregates are distributed over volume and the
16c, distribution densityf (t,V) is governed by a kinetic equation

Kk(Cy )3~
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TABLE |. Dimensionless activation enerdy, number of particles per critical aggregate , critical
value of aggregate volum¥, related to ferroparticle volume, and semiaxis ratio for critical aggregate
c, as functions of external field strengti, for a magnetic fluid with initial volume concentration
¢o=0.045; equilibrium concentrationg,,¢;, and the corresponding values of the Langevin parameter
a=mHy /KT are also shown.

H0 (OE) o @\ en A Cyx V* v N* E

51 1.42 0.038 0.264 0.007 0.046 5¢10° 1.3x10° 128

53 1.47 0.035 0.270 0.010 0.052 x80° 489 65.7

55 1.53 0.032 0.275 0.013 0.055 839 231 40.7

57 1.58 0.030 0.280 0.015 0.057 454 127 28.1

60 1.67 0.028 0.287 0.017 0.058 220 63 18.3

65 1.80 0.024 0.299 0.021 0.059 83 30 10.5

70 1.94 0.022 0.307 0.023 0.059 45 14 7.3
of o9 /dV D and the nucleation rate They enable us to construct time
i W(af) =0, t>0, V>V,, (18 and volume scalek, andV, intrinsic to the evolution pro-

cesses under study
under complete neglect of fluctuations of the diffusionally
controlled growth rate of a single aggregate. We presume the
function f(t,V) to be normalized to the number concentra- Vo=
tion N(t) of the aggregates. The determination of the quan-
tity dV/dt as a function of aggregate volunveand actual
value of absolute supersaturatidrhas been the objective of
Sec. lll[see expression®) and (11)].

Initial and boundary conditions imposed upon physically
meaningful solutions of E¢(18) are of the form It is also convenient to introduce dimensionless variables and
parameters according to the relations

(477_) 2/3 DA, 3 1/(2—pB)
3] eudo cHin(c,/2)|VE IR ’

1
to:mv Jo=J(Ap). (21)

dv A
5t vy, =JIAM]=CA(Mexg —E5 5|, 1(OV)=0.

v 19 Fr9=VAHLY), s= o, 7. _AW
( ) (T,S)— 0 ( ’ )l S_V_O, T_g! w(T)_A_O!
The above representation of the nucleation thtesults
from Sec. IV[see expression E¢L7)]. HereC~const,A is o
an initial value of the supersaturation, aiecE(A,) stands 9= - (22
0

for the dimensionless activation energy referred to as initial
supersaturation. The quantify is commonly much larger ) o _ _
than unity and depends on a magnetic field strergtfe Equationg18)—(20) and(11) in dimensionless variabld¢22)
Table ). are

In order to close the set of equatiofis), (19), and(11),

it is necessary to define the supersaturation as a function of er 9 F<f)=0 -0 -0 d_S_ B
parameters specific to an assemblage of growing aggregates. gr “’(T)as( §)=0, >0, s>0, dT_S (1),
A requirement of conservation of the overall number of fer- (23
roparticles in the system under study leads to the mass bal-

ance equation F(09)=0, Fsflso=exdEg(n], g(n=1-w(7)?

Vi w(7)=1—qf0 sF(r,s)ds, w(0)=1. (29

Since the characteristic volume of aggregates during the
intermediate stage of their gro_vv_th cons!de_rably exceeds thg is this set that is investigated in the remainder of the paper.
volume of the critical nucleus, it is permissible to regard the
latter quantity as negligibly smaW*/3—Vv213<~v/3 in ex-
pression(11). It is consistent with the neglect of possible VI. INTEGRAL EQUATION
coalescence processes specific to this stage. The aggregate FOR THE SUPERSATURATION
distribution density is clearly little affected by this simplifi-
cation only in the vicinity of the poinW/~V_, but it does
not change in the region of interege-V, .

The set _of equ_ationﬁS)—(ZO) and(11) includes only_ twq _ u(r,s)=sPF(7s), O(7)= J'Tw(r’)dq-’. (25)
external dimensionless parameters: the mutual diffusivity 0

Let us introduce the new functions
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From Eqgs.(23) we get a boundary problem far(r,s) Ref. [27] and Laplace’'s method in Reff28,29. At small
which can be solved with the help of a method of characterdimensionless times we get from E@9) asymptotic esti-
istics. This solution, satisfying the initial conditions, can bemates
written in a form

Q
F(7,8)=s"Pu(8(7)—y(s))H(8(7) - y(9)), o(H)=1, 9{=0, w(f)~1-—<06’,
s 51_13
= | x Bdx= 2—-8 11
y(s) JOX dx -5 (26) 5:m%7’ (30)

whereH(z) is the Heaviside step function, and the function

. . . . . . < 1/6.
u(z) satisfies the boundary conditiga3) the region of validity of which is obviousi<(6/Q)~'°. The

time dependence ofs(7) can be estimated by using the
ulr(o —expE[1— - 2 equalltye'(T)%Tfollowmg from Eq. (25) at smallr. .
[@(m)] HE[L=o(n) "]} @ At sufficiently large# an approximate solution of integral
The characteristics of the partial differential equatjag) ~ €duation(29) may be obtained under the conditions when the
gives us the value at a time of dimensionless volume large values of parametéris taken into account. Sinde is

s(,€) of an aggregate that appeared at a mongent larger than unity and the functiog({) is negative(23),
exdEg({)] is rapidly decreasing asis growing. This shows
s(r,&)1 P that the main contribution to the integral in E§9) is given
yl(s(7,é)]= -5 6(7)—6(§), by the nearest vicinity of the poirt=0, which permits ex-
pansion of the slowly changing functio€ ¢)Y*~# in a
s(7)=s(r,0)=[(1—B)0(r)]1~P. (29) Taylor series. Following29] we get
Heresp,(7) can be considered as a maximal volume of ag- w(0)=1—Qf6 gLI(L=B) _ ! geIA=By ...
gregates. In order to make use of E(#6) and(27) we need 0 -

to know a functional dependence of the dimensionless super-

saturationw(7) on the functiond(r) defined in Eq.(25). xexEg(£)]d¢g. (32)
This dependence has to be found by means of substituting ) )
F(r,s) Eq.(26) into the mass balance equation in E24). For the reasons given, the above integrals converge very

Changing the inegration variabsso g according to Eq(28) quickly, which allows both the upper limit of integration to
be put equal to infinity and small times asymtot{@$) to be

y(s)=0(7)—¢, dy(s)=s Pds=—d¢, used forw({). Therefore, it is easy to obtain an approximate
expression
s=0—{=6(71), S=Sy(7)—(=0,
w(0(7)=1—e,0(7)"+e,0(7)" 1+,
and using Eqs(27) and(28) we get an integral equation for

the dimensionless supersaturation as a functiofi of y=1/(1-pB)~714, (32
w[(ﬁ(r))]=1—Qfﬁ(7)[0(7)—§]1’(1"” N N
. £1=Q [ extEUO1z, e2-Qy [ ¢ exiBo(O)10L,
xexp(E[1— w({) " 2]}d¢, (29) ,
Q \-
Q:q(l_lg)ll(lfﬁ’)wS_lo_ g(g)zl_(l_ggﬁ) )
This equation describes the dynamics of changes in the siwhich is valid at sufficiently large times after the beginning
persaturation caused by the growth of aggregates. of the evolution process. Coefficients can be approxi-
mately calculated with the help of the Eulerianfunction
VII. KINETICS OF THE METASTABILITY REDUCTION I'(z2

functional integral equation given in ER9), which could e1~ 5

The supersaturation is governed by the strongly nonlinear Qf & \°
(ZEQ) ' (

1

5)%0.9E{E‘4Q7)1’“~1—1.5, (33
hardly be handled to yield an exact solution in an explicit

form. However, there is a large parameter in the exponent of

. . . - ) 218
the integrand in Eq(29), due to the fact that the dimension _ QY( ) F(g) ~0.95E8Q%)1/11-0.1-0.2,

less activation energ of the critical nucleus formation is #2775
much larger than unity. Since the functigri7) defined in

Eq. (23) is negative, a sharply decreasing function shows up It can be readily demonstrated that not only
in that integrand, and this gives the opportunity to get are,/e;~(EQ)~**'<1, but also &;,;/e;<1 at any
approximate solution. The same approach is common in the=1,2, . . . . ltjustifies using merely a few initial terms in the
theory and has been developed using the iteration method series in Eqgs.(31) and (32). The differential equation

2EQ
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This inference is surely inaccurate because it ignores the
processes of particle redistribution between the aggregates,
which have much in common with the coalescence and re-
condensation processes in two-phase molecular systems. The
latter processes affect the final stage of the new phase for-
mation in the molecular systems and the Ostwald ripening
process in colloidal systems and should be accounted for
during this late stage. A kinetic theory of Ostwald ripening in
magnetic fluids represents an important but rather difficult
problem. In many respects it is caused by the strong anisot-
r ~ T ropy of the droplike aggregates and the tip effd&tks

- Equation(35) permits an estimate of the duration of the
intermediate stage of phase transition studied here to be
made as

o(T)

n(t)

08

04

0 1 T

FIG. 2. Time dependence of the dimensionless supersaturation P msfl/y:Sﬁflw874/7~(E16/77Q74/11) (36)
w(7)=A(t)/A (curves 1, 2, and dotsind dimensionless aggregate m-=1 1 )
concentrationn(7) =N(t)V, (curve 3 for a metastable magnetic
fluid characterized by the activation energy- 18.3 (see Table)
dots, numerical solution of the integral equati@®); curve 1, ap-
proximate expression&82)—(34); curve 2, small time asymptotics

Values of 7, corresponding to Eqg35) and (36) are to be
found in accordance with the definition éfin Eq. (25) and
with allowance for the representation e{ 7) in Eqg. (32).

(30).

VIIl. INTEGRAL CHARACTERISTICS OF A
do(7)/d7= w(6) results from Egs(25) and(32). Its solution SYSTEM
at the evident initial conditio®(0)=0 is OF AGGREGATES

o(r) de The evolution of a system of growing aggregates can
T= f 1o 7 =T (39 sometimes be described, with sufficient accuracy, with the

0 €107+ &2 help of moments of the aggregate size distribution. Among
those moments are the number concentrafiff) of the

Asymptotics (32) and (34) are adequate at sufficiently aggregates and the mean dimensionless vostie))

large 6(7) . A corresponding estimate gives the following

restriction imposed on this function from below Ed82) w o(r)

and(34) to be valid: n(T)=N(t)V0=f F(r,s)ds:f exdEg()]dZ, (37)
0 0

0(7)>(8I12EQ)Yo~1.UEQ) ¥~¢,/e,<1.

1 o0
Thus we have obtained a pertinent approximate solution of (s(m)= Wjo sK(r,s)ds
the integral equation in Eq29) that determines relative su-
persaturatiornw(7) as an implicit function of dimensionless (1-B)7 (oD
time 6(7). =) fo (60— 0)"exd Eg({)]d¢,

It is worth noting that the usage of further terms of the
series in EQ.(32) is impossible in a straightforward way
because it would give rise to terms with negative exponent
of the type of9”™ ", n=2,3, ... ,y—n<0, which diverge as
7 goes to zero. This is due to violation of the necessary n(n~6(n~r<1, (s(7))~(1—p)76(7)"5. (39
conditions of the transition from Eq31) to Eq.(32) and, in
particular,e; cannot be regarded now as independent of At large times, when Eq(32) is approximately valid, we
Allowance for such a dependence brings about a correct bufave
somewhat cumbersome mathematical problem, instead of the

n(7) being the number of aggregates within the volume
§/O. At small times we obtain, similarly to Eq30),

one that has been studied. 5 \YT(118) ¢, a1
The behavior of functionw(7) in conformity with ap- n(7)~ 2EQ 5 :6“0-99IEQ) , (39
proximate formulag32)—(34) is demonstrated in Fig. 2. It

agrees sufficiently well with results of an exact numerical (s(1)~(1-B)"[ 0(7)"— £,60(7)" " Ye,]
solution of the integral equation in ER9) which are shown

in Fig. 2 by dots. This proves the above approximation to beynereg(r) is implicitly expressed in Eq34). These formu-
reasonably correct. In compliance with the developed theorygs are derived analogously to those in the preceding section.

the supersaturation entirely vanishes for a finite va#uehat Dependence on the dimensionless timenff) is shown
can be presented, by virtue of E@4), through the approxi-  4i50 in Fig. 2. It can be seen tha¢r) becomes practically
mate relation constant and coincides with its asymptotic value in 8§)
1e 2 after a rather short period of time. This is easy to understand
0, =81*1’7+ l —2+O( (_2> ) (35) because _the nucl_eatlon rate represents a sharply increasing
Y €1 €1 exponential function of the supersaturation and becomes
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{s(T) F@,s)
1
Sm(t) : 4t
2 2
3

02

3 27

_/ ‘
0 02 04 5
0 1 1

FIG. 4. Dimensionless distribution density at subsequent time
FIG. 3. Time dependence of the maximum aggregate volumenoments:f= 6,,/2 (curve 3, 36,,/4 (curve 2, and 6, (curve 3.
sm(7) (28) (curve 1 and the mean aggregate volufs 7)) (39)
(curve 2 in comparison with the expected time dependence of theyhere the functiory(s) is defined in Eq(26) and the func-
critical aggregate volume, (1)~ w(7)~* (curve 3. tional relation between and 6(7) is given by Eq.(34).

The evolution of the dimensionless distribution density is
negligible when the latter quantity falls below a certain |eve|.presented in Fig. 4, where the measure of the area under the
After that, new critical nuclei cease to occur, and the evolucurves is equal to the dimensionless aggregate concentration
tion proceeds at the expense of diffusion exchange by pai(r). At small times the distribution density is a very high
ticles alone. As is seen from Fig. 2 the process of formatiorand narrow function of the dimensionless aggregate volume.
of new supercritical nucldian increase in aggregate concen-This is bound up with the active nucleation process at the
tration n(7)] goes on during the period of time when the beginning of the intermediate stage. After the period of con-
small time asymptotic solutio(80) is adequatésee curves 2 tinuing initiation of new nuclei the aggregate concentration
and 3. This result lends support to the validity of using the in the system becomes constasee curve 3, Fig. )2 It
small time asymptotic$30) in exponent function in the in- means that subsequent evolution of the distribution density
tegral equatior31). goes on under the condition that the area under the curve

Time dependence of the mean volume of the aggregates {gmains constant. As is clear from expressi28) the vari-
illustrated in Fig. 3. At the end of the intermediate stage ofous points of the functioff (7,s) move towards the right in
the evolution(that is, atr~ 7,,), the mean aggregate volume Fig. 4 (i.e., in the space of dimensionless volumnasa rate
reaches its maximal value that can be shown to be equal tgs/d+. Since the rate of such a motion is an increasing func-
tion of dimensionless volums, then the functionF(r,s)
(s(Tm))~e1 *~0.43 E*Q 7)1 spreads. This means that the volume distribution density of
the aggregates is characterized by an increasing dispersion.

The reduction of metastability during the intermediate stagdn accordance with this, the maximum value of the function
is formally attended with the increasing of the critical F(7.S) is a decreasing function sf(see curves 1-3, Fig)4
nucleus volumeV, (t)~A(t) 3 ands, (7)~w(7) 3. Such

expected dependence is shown in Figic8rve 2. Dimen- X. DISCUSSION

sionless critical volumes, (7) is much less than the mean ) o

volume (s(7)) everywhere over the region of time< . To sum up we are able to describe with high accuracy by
This gives proof to the neglection of the recondensation proPurely analytical methods, with merely occasional applica-

guent evolution of the system of droplike ellipsoidal aggre-

gates in a magnetic fluid under the presence of an external

IX. EVOLUTION OF THE VOLUME magnetic field. Essentially the same approach could be ap-
DISTRIBUTION DENSITY plied to numerous processes of new phase formation in mo-

The volume distribution density is obtained in dimension-'€cular and colloid systems. As compared with the latter, the
less form in Eqs(26) and (27) and is fully determined if magnetic field induced phase separation in magnetic fluids is
o(7) and conseduently@(r) are known. This is why the essentially controled by the mutual relation between the vol-
above results concerning the decline of the supersaturatioll‘lme of an aggregate and Its shape. A_n elonga'glon of the
allow F(7,s) to be calculated as a function of dimensionless2d9regate during its growth is accompanied by an increase of

time and of relevant parameters. When the large time asym oth the interfacial surface and the concentration gradient in
: the vicinity of the side surface. The latter is caused by the

rgt;:]se (?;) n|1$ adequate, the distribution density can be Wmtenrelative decreastas compared with that for a sphef the
transverse size of the ellipsoid. Consequently, the aggregate
o elongation results in a higher value of growth rate in com-
F(7,5)=s Pexp[Eg[0(7)—y(S)[}H[8(7)—y(s)], (40) parison with that of spherical droplets. On the other hand, the
large aggregate surface hinders the process of formation of
9(z)=1—(1—g,2"+e,27" 172, initial aggregates and tends to an increase of the critical
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nucleus activation energy. Nevertheless, the rate of nucle- y(9)~1—¢,0"+¢,0" 1, (s( 9)>~(m_81m—1/82),
ation and the kinetics of the intermediate stage of phase tran-

sition go on more rapidly in a magnetic fluid made meta- n(6)~(QE) /9,
stable by an external field. This is due to the fact that a small

strengthening of the magnetic field implies a significant in- _ ~1/s _ —2/s
crease of initial supersaturatideee Table )l The latter ex- 21~Q(EQ) . 22~Q(EQ) 0
erts primary control over the kinetics of the phase separation
process.

The validity of the developed theory is somewhat re- , , .
stricted by certain underlying conditions imposed on characP0th for the magnetic fluid phase separation induced by an
teristic time scales of involved processes, as well as on thgXternal field, and for the phase separation of a colloid made
sizes of aggregates and nuclei which might be considered ghetastable by a fall of temperature or an increase in 'Fhe_lonlc
a basis of classical thermodynamics. These conditions argireéngth of a solveni24,29. All the differences consist in
ensuing restrictions are essentially the same as those in tfig® various values of exponenss and y. In the case of
theory of nucleation in molecular systems and, thereby, it ignagnetic field induced phase separation we get, from Sec.
hardly worth discussing them in this paper. We would like,VIl: ¥=7/4, 6~11/4. When the phase separation takes
nonetheless, to place emphasis upon the most serious r_@I_ace under the absence of an external fleld, t_he correspond-
quirement that the critical nucleus should be sufficientlyi"d value of exponents were determined in RE29]:
large to be regarded both as a macroscopic object liable to b¥~ 3/2, 5:_5/2- ) ,
explored with the help of conventional methods of classical The pertinent volume and time scales of the evolution
thermodynamics and as a highly elongated ellipsoid witHPr0cess equal, andt, defined by Eq(21). The first scale is
semiaxis ratioc, <1 (see Table)l The last requirement is re_presentanve of the uIt_|mate vo_Iume of an aggregate.at-
surely fulfilled for a magnetic fluid, except for a region of tained at the end of the intermediate stage of the evolution.
very high initial supersaturations. In the opposite case ofimilarly, to has the meaning of the period of time during
very high relative supersaturation, only a few particles sufwhich the supersaturation falls to zero. _Measurements of
fice to originate the critical nucleus, and the above methodd10s€ scales in the actual phase separation process help to
are not likely to be appreciable without appropriate modifi-€nable one to judge the nucleation rateEmergence of ag-
cation. In this case, methods founded on an analysis of th@regates affects rheological, thermophysical, and other prop-
kinetics of the attachment of new particles apparently have t&rties of magnetic fluids to an extremely considerable extent,

be used and the fractal nature of clusters and the resultingf€ir evolution making those properties time dependent. By
microaggregates ought to be accounted for. using the corresponding methods of the macroscopic theory

The continuing nucleation plays a role only at an earIyOf multiphase and heterogeneous media_, the time evolution
phase of the intermediate stage because of an abrupt drop % Such properties may be predicted with the help of the
the nucleation rate caused by a seemingly insignificant desnown aggregate distribution densit§0). _ _
crease in the supersaturatidtf.a transient value of the su- ~ Unfortunately, the authors have failed to find reliable ex-
persaturation is only 5% smaller than the initial one, this ratg?€riments on the kinetics of the phase separation process in
can be proved to be diminished by a factor expi),hich ~ Magnetic fluids checked against the developed theory. How-
can be quite tremendous at larf§d After that the nucleation ~€Ver, it seems to be certain that the theory is implicitly cor-
may be neglected. General evolution laws happen to be unfoborated by the genera_l bulk of available experlmental_ evi-
versal in the case of the diffusion kinetics of phase separatiof€nce- Moreover, there is an excellent agreement of a similar
when expressed in terms of the special time varialfle), the_ory[28] with some experiments on batch crystallization,
defined in Eq.(25). These universal laws for the diffusion Which lends additional support to the present theory.
limited aggregate growth in the small and large time asymp-

—1ly
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