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Kinetics of a magnetic fluid phase separation induced by an external magnetic field

Andrej Yu. Zubarev and Alexey O. Ivanov
Department of Mathematical Physics, The Urals State University, 51 Lenin Avenue, Ekaterinburg 620083, Russia

~Received 20 December 1995; revised manuscript received 12 February 1997!

We study the processes of nucleation and subsequent evolution of a system of droplike aggregates sus-
pended in a macroscopically homogeneous magnetic fluid made metastable by strengthening of an external
magnetic field. The growing aggregates are highly elongated ellipsoidal shaped and are distributed over vol-
ume. Expressions for the growth rate of an aggregate, the critical nucleus volume, and the nucleation rate have
been obtained. The aggregate distribution density is governed by a kinetic equation with neglect of fluctuations
in the growth rate of a single aggregate. The approximate solutions for supersaturation and diverse character-
istics of the distribution density have been found as functions of time. The kinetics of evolution of a system of
ellipsoidal aggregates in the presence of a magnetic field differs essentially from the corresponding kinetics of
a system of spherical droplets.@S1063-651X~97!13605-4#

PACS number~s!: 64.60.Qb, 64.60.My, 75.50.Mm
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I. INTRODUCTION

Magnetic fluids~ferrofluids, ferrocolloids!, stable colloi-
dal suspensions of the one-domain particles of ferro-
ferrimagnetic materials in liquids, offer unique properti
@1–3# that have attracted the attention of researchers.
small sizes of dispersed ferroparticles~diameterd;10 nm!
provide the particles with an inherent magnetic momentm of
the constant value. The stabilization of suspension is usu
obtained by coating the magnetic grains with a surfact
layer which allows us to neglect the influence of the van
Waals forces@1,2#. As a result, the ferroparticles intera
with each other through the steric repulsion of surfact
coats and the dipole-dipole interaction of particle magne
moments. The latter interaction is responsible for the ph
separation of magnetic fluids@4–9#, accompanied by the ex
istence of droplike aggregates. These aggregates can be
sidered as fluids@6,7,9# with an interfacial tension surface
representing, essentially, a highly concentrated ferrocollo
phase suspended in a dilute matrix in the form of drop
@4,5,7,9#. Typical dimensions of droplike aggregates are
the order of, approximately, 1–5mm, i.e., the number of
ferroparticles comprising the aggregate is approxima
104–106.

From the viewpoint of statistical mechanics the existen
of droplike aggregates may be considered as a result of
violation of thermodynamic stability in a system of dispers
particles that leads to their condensation@10,11#. Therefore,
phase separation in magnetic fluids is treated further as a
order phase transition of the ‘‘colloidal gas — colloidal liq
uid’’ type. Two main reasons for the separation of colloid
systems are known@9–12#, a decrease in temperature or
increase in electrolyte concentration in ionic stabilized d
persions. In magnetic fluids still another type of phase se
ration is experimentally observed: phase separation in a m
netic field@4–8# under isothermal conditions. In this case,
equilibrium conditions, a uniform magnetic field increase
equivalent to an effective temperature lowering. Such p
nomenon looks like a nontrivial phase transition of the co
densation type, induced by an external magnetic field.

In principle, existing statistical thermodynamic models
551063-651X/97/55~6!/7192~11!/$10.00
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magnetic fluids@13–20# have demonstrated that, in a syste
of particles interacting through a noncentral dipole-dipo
potential, the condensation may occur in the absence
magnetic field at a temperature below a certain critical o
the latter is dependent on the value of the ferroparticle m
netic moments~i.e., on the diameters of the magnetic core!.
This is associated with the fact that a noncentral dipo
dipole interaction of magnetic moments of particles displa
itself on the whole as an effective interparticle attraction.
a uniform external field this effective attraction strengthe
@16–18,20#, thus a magnetic field stimulates the process
phase separation in magnetic fluids. The equilibrium ph
diagrams of ferrocolloids, under the conditions of such
magnetic field induced phase separation, were experim
tally studied in Refs.@6–8,21,22# and theoretically calculated
in Refs.@16–18,20#. It was shown that even weak and mo
erate external fields (;30–300 Oe! may result in the break
of the thermodynamic stability of a ferrocolloid. During th
phase separation under the presence of a magnetic field
occurring droplike aggregates are spindle shaped
stretched along the external field direction.

In the present research we should focus our attention
the problem of the theoretical description of the kinetic p
cess of ferrocolloid phase separation from a metastable s
induced by a uniform magnetic field. The break of therm
dynamic stability of a magnetic fluid is followed by th
origination of critical nuclei of a new phase, by their tran
formation into macroscopic droplike aggregates and by
ensuing growth of those aggregates in a metastable env
ment.

As far as nucleation is concerned, a relevant theory can
put forward by following common trends specific to th
theory of nucleation in molecular systems@23#. Recently
such a theory has been worked out for colloids in Ref.@24#.
The nucleation kinetics essentially depend on the shap
emerging nuclei. An analysis, presented in Sec. II, sho
that even in weak magnetic fields the shape of a drop
aggregate with good accuracy may be approximated b
highly elongated ellipsoid of revolution, the elongation
which is dependent on the aggregate volume. The aggre
growth rate, in a supersaturated ferrocolloidal environme
7192 © 1997 The American Physical Society
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55 7193KINETICS OF A MAGNETIC FLUID PHASE . . .
is determined in Sec. III under the assumption that t
growth is limited by a diffusional transport of ferroparticle
to the aggregate surface. On the basis of the class
Volmer-Frenkel-Zel’dovich nucleation theory in Sec. IV, th
expressions for the nucleation rate and the critical aggre
volume are obtained.

The necessity of allowing simultaneously for the nuc
ation and the growth of new phase elements has been
knowledged in Refs.@25,26#. Such a combined process o
the growth of existing aggregates and of the initiation
additional nuclei in the circumstance of permanently red
ing metastability of the parent magnetic fluid, is covered
the so-called intermediate stage of phase transition.
analysis of this stage is greatly complicated by the prese
of negative feedback between the process of aggregate
mation and growth dependent on a transient degree of m
stability ~e.g., a value of the supersaturation!, and that of the
gradual reducing of metastability by the growing aggrega
@27,28#. Proposed in Ref.@28# a method for solving the prob
lem has been applied to study the evolution of spher
droplike aggregates in colloids@29# in the absence of the
external field. A similar approach, based on the analysis
the kinetic equation for volume distribution function o
highly elongated ellipsoidal aggregates, is used in S
V–IX. An integral equation, describing the metastability r
duction with time, is obtained in Sec. VI and approximate
solved in Sec. VII. The evolution of the integral character
tics of the aggregate system and of the aggregate distribu
function are investigated in Secs. VIII and IX, respective

We shall consider a sterically stabilized magnetic flu
containing identical spherical ferroparticles, suspended
neutral liquid carrier. The ferrocolloid is supposed to be th
modynamically stable in the absence of a magnetic field.
if a weak uniform external magnetic fieldH0 is present, a
macrocsopically homogeneous state of the magnetic fluid
comes unstable and, as a consequence, the magnetic
with the initial volume particle concentrationw0 is bound to
be separated into two homogeneous phases characteriz
the equilibrium valuesw I and w II of the concentration
(w I,w II ) . At the thermodynamic equilibrium state the c
existing phases are separated by a plane interfacial su
which is parallel to an external field.

In what follows, we are going to study the kinetics
phase separation of a dilute magnetic fluid (w0!1). In so
doing, the inequality for concentrationsw I andw II is valid
(w I,w0!w II ). Hence, the magnetizationMI of the low con-
centrated phase may be neglected as compared with the
netizationMII of the high concentrated phase (MII@MI). In
closing, we shall consider the separation in a weak magn
field, so the ferrocolloid magnetization is directly propo
tional to the field strength.

II. QUASIEQUILIBRIUM SHAPE
OF DROPLIKE AGGREGATE

Let us consider a single droplike aggregate placed i
magnetic fluid under separation conditions. It seems nat
to suppose that the relaxation of an aggregate shape to
most energetical advantageous one is very quick as c
pared with the change of the aggregate volumeV. Thus, the
shape of the aggregate with a given volumeV may be deter-
s

al

te

-
c-

f
-
y
n
ce
or-
ta-

s

l

f

c.

-
on

a
-
ut

e-
uid

by

ce

ag-

tic

a
al
the
m-

mined under the conditions of its energy minimum. Expe
mental studies@6,7,30# and theoretical analyses@31# have
demonstrated that the magnetic fluid drop in an external fi
is spindle shaped. A simple ellipsoidal approximation a
shows good agreement with experimental observati
@6,7,30# in weak-to-moderate magnetic fields.

By using the results of Ref.@6# we consider the droplike
aggregate as an ellipsoid of revolution stretched along
external field direction. This shape is dependent on the
ance between the surface energyFs and the excess magnet
energyFm . The energyFs is determined by the values of th
aggregate surfaceS and the interfacial tensions. The latter
depends both on the magnetic field strength and on the l
mutual orientation of the surface and vectorH0 ~Refs.@30–
32#!. However, this dependence reveals at large strengt
an external field in the vicinity of the saturation magnetiz
tion of magnetic fluid~Ref. @30#!. Therefore, parameters
will be treated as an effective interfacial tension which
mains constant along the surface of the droplike aggrega

Fs5E
S
s ds'sS52psS 3V4p D 2/3c2/3S 11

arcsinA12c2

cA12c2
D .
~1!

Here c5b/a is the ratio between the ellipsoid semiaxesb
anda.

The excess magnetic energyFm is connected with the fac
that volumeV characterized by magnetic permeabilitym II is
placed in a medium characterized by magnetic permeab
m I(m II@m I). The internal magnetic fieldH2 is uniform in
the case of the ellipsoidal shape of the volumeV. Thus for
the energyFm we obtain, according to Ref.@33#,

Fm52
VH0

2

8p

m I~m II2m I !

m I1n~m II2m I !
,

n[
c2

2~12c2!3/2F lnS 11A12c2

12A12c2
D 22A12c2G , ~2!

wheren is the demagnetization factor.
In the quasiequilibrium state the aggregate shape ma

determined under the condition of minimization of total e
ergy with respect to semiaxis ratioc:d(Fs1Fm)/dc50. The
rather complicated expression of quasiequilibrium shape
tor c upon the dimensionless magnetic field and aggreg
volume is presented in Ref.@30#. The distinctive feature of
this expression is the occurrence of hysteresis loops@6,7# on
the curvesc(V) in the case of a sufficiently large value o
m II (m II /m I.20). In this area the magnetic fluid drop unde
goes a jumplike elongation, the main features of such a p
cess have been experimentally studied in Refs.@6,7,30#. The
analysis of the dependencec(V) shows that the ellipsoida
drop becomes highly elongated (a@b, c!1) if the combi-
nationH0V

1/6s1/2 exceeds a certain value which is approx
mately equal to 1. Thus, for typical values of interfacial te
sion s;1024 erg/cm2 @6,7,30# and weak magnetic fields
H0;10 Oe we obtain the volumeV;1–10310218 cm3.
The latter is of the order of the ferroparticle volum
v(d;10 nm, v;103 nm3). In consequence, the droplik
aggregates in the magnetic fluid may be regarded as hi
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7194 55ANDREJ YU. ZUBAREV AND ALEXEY O. IVANOV
elongated ellipsoids of revolution. In so doing, the relatio
ship between aggregate volumeV and semiaxis ratioc takes
the simple asymptotic form

V'
B

c7u lncu3
, B[

4p7s3

3H0
6

m I
3

~m II2m I !
6 , c!1, V@B.

~3!

One can see from asymptotic equation~3! that a large in-
crease of aggregate volumeV is accompanied with a sma
decrease of ratioc.

III. A MODEL OF THE GROWTH OF AGGREGATES

Because the potential barrier preventing a new part
from adhering to an aggregate is hardly expected to be la
the growth of the aggregate with volume particle concen
tion w2 is likely to be limited by the rate of the diffusiona
transport of particles to the aggregate surface. Then

w2

dV

dt
52E

S
j•ds, ~4!

where j is the ferroparticle flux density in the metastab
phase. The characteristic time for establishing a station
concentration field in the vicinity of the growing aggregate
evidently much less than the time required to change
aggregate volume substantially. This means that the ferro
ticles diffusion can be considered in the quasistationary
proximation

divj50, j52D~¹w1w¹u!, wu`5w` , wuS5w1 ,
~5!

D5
kT

3phd
, u52 ln

sinh~a1!

a1
, a15

mH1

kT
,

whereh stands for the viscosity of the pure matrix liqui
D is the coefficient of mutual Brownian diffusion of th
particles down a concentration gradient, the current conc
tration of a metastable phasew` may be regarded as a slo
function of time. The one-particle Langevin free energy
an ideal paramagnetic gasukT is dependent on a local valu
of magnetic field strengthH1 in low concentration phase
and2Dw¹u is the particle flux density caused by the inh
mogeneities of magnetic fieldH1 .

The boundary condition at the aggregate surface cont
the quasiequilibrium concentrationw1 of the diluted phase in
the vicinity of the aggregate. This concentration can be
termined with the help of the conditions of chemical a
mechanical equilibrium of the aggregate when both
bubble and the magnetic pressures are taken into accou

n~w1!5n~w2!, P~w1!1sK5P~w2!12pM2n
2 . ~6!

Here the ferroparticle chemical potentialn and osmotic
pressureP are regarded as functions of the concentrationw
of the particles by volume,K is the curvature of the inter
face, andM2n is the normal to the surface component
magnetization in high concentration ferrocolloidal pha
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The corresponding magnetization component in the low c
centration phaseM1n can be neglected in comparison wi
M2n .

The curvatureK and normal magnetizationM2n represent
rather complex functions of the surface coordinates. In or
to simplify the mathematical structure of Eqs.~6! let us make
some obvious assumptions. The ellipsoid elongation co
cides with the direction of magnetization vectorM2. There-
fore, in the case of the highly elongated aggregate, the c
tribution of the normal to the surface componentM2n to the
mechanical equilibrium condition~6!, as a first approxima-
tion, may be considered as negligibly small. This approxim
tion breaks down near the tips of the droplet where the li
of a local magnetic field are modified. But the estimati
given below shows that the tip areas make the contributio
the aggregate growth rate of the order ofc!1. And so, the
aggregate growth is controled mainly by the ferroparticle
sorption on the ellipsoid side surface.

By taking for granted that the concentration shifts due
the interface curvature are relatively small,udw1u
5uw12w I u,w I ,udw2u5uw22w II u!w II , and by carrying
out an averaging procedure over the interface, we arrive
set of linear algebraic equations to find the concentrat
shifts. Making simple calculations we obtain the expressio
for quasiequilibrium averaged concentrationsw1 and w2
which are constant along the aggregate surface and ca
used in the boundary problem~5!

w15w I1
s̄U

V1/3, w2'w II ,

U[
]n/]w II

~]P/]w II !~]n/]w I !2~]P/]w I !~]n/]w II !
. ~7!

Here s̄ is an effective parameter which appears in Eqs.~6!
during averaging procedure over the interface, this param
will be determined later.

Due to the ellipsoidal shape of the aggregate it is con
nient to solve the boundary problem~5! with the help of
ellipsoidal coordinates@33,34#. Then let us analyze this prob
lem taking the highly elongated shape of the aggregate
account. In this case the magnetic field inside the aggre
approximately equals to the external fieldH2'H0. Accord-
ing to this, the magnetic field outside the aggregate is a
approximately equal to the external oneH1'H0 on an aver-
age. In the vicinity of the ellipsoid side surface a magne
field is approximately constant (a1'const), so the magnetic
‘‘convective’’ flux density j a52Dw(]u/]a1)¹a1 is negli-
gibly small. The diffusion flux density here is of the ord
j D;Dw` /b. The total diffusion flux on the ellipsoid side
surfaceI D;ab jD;Dw`a. ‘‘Convective’’ flux density is de-
tectable only in the vicinity of the ellipsiod apices whe
j a;Dw`a/b. Total convective flux on ellipsoid apex su
face I a; j ab

2;Dw`ab. So in the case of the highly elon
gated aggregate, the strong inequalityI D@I a holds true. On
the basis of such an assumption the magnetic convective
2Dw“u allows itself to be neglected as compared with d
fusional flux2D¹w. This simplification is obviously valid
for dilute metastable magnetic fluid,u lnw1u@uln(sinha/a)u.
Thereafter, we obtain the familiar differential equation f
determining the concentration profile in the vicinity of a
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55 7195KINETICS OF A MAGNETIC FLUID PHASE . . .
aggregate. This equation is similar to the problem of a
electric ellipsoid placed in an electric field@33#. By using the
solution from Ref.@33# and Eqs.~7! we get the growth rate
of a highly elongated ellipsoidal aggregate

w II

dV

dt
53S 4p

3 D 2/3DV1/32V
*
1/3

c2/3u lncu
D, V

*
1/35

s̄U

w`2w
I

, c!1.

~8!

Here the parameterV* means the critical volume of the ag
gregate nucleus, in the caseV.V* the aggregate grows
otherwise V,V* the aggregate recedes. The quant
D5w`2w I plays the role of the absolute supersaturation
the parent magnetic fluid.

The diffusion limited growth rate of an ellipsoidal aggr
gate~8! differs from the well-known classical growth rate o
a spherical droplet@24,35# by the presence of functionf (c)
dependent on the semiaxis ratio. In the casec51 (a5b,
sphere! this function must get the valuef (1)51, in the limit
c→0 (a@b) the divergence lawf (c)51/c2/3u lncu→` takes
place@see expression~8!#. The functionf (c) is proprotional
to the growth ratedV/dt under the conditions of equality o
other parameters. Hence, the more elongated aggre
grows more rapidly. It is the reasonably expected res
which is caused by increasing of the aggregate surface
ing elongation. The dependence of the dimensionless gro
rateG(V)5(dV/dt)(3/4p)2/3w II /3DDV

*
1/3 upon aggregate

volume is demonstrated in the Fig. 1. Here the dots pre
expression~8! with an account of the interrelation betwee
aggregate volumeV and semiaxis ratioc given by formulas
~3!.

In order to get the explicit form ofdV/dt as function of
V it is convenient to use the asymptotic expansion

z2 lnz5y, y→`, z~y!'yS 11
lny

y
1••• D . ~9!

After evident calculations we obtain from Eq.~3!

c5c~V!'c* SV*V D 1/7F ln~V* /B!

ln~V/B! G3/7, ~10!

FIG. 1. Dependence of the dimensionless aggregate growth
G(V)5(dV/dt)(3/4p)2/3w II /3DDV

*
1/3 on relative aggregate vol

ume V/V* : curve 1, expression~11!; curve 2, diffusion limited
growth rate for spherical dropletG(V);(V/V* )

1/3; dots,
numerical solution of Eqs.~8! and ~3!.
i-

f

ate
lt
r-
th
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whereB is determined in Eq.~3! , andc* is the semiaxis
ratio of the aggregate with critical volumeV* . Expression
~10! may be simplified by taking into account that the ord
of the value of ratioV* /B is about 107 @see Eq.~3!#. Then
we may expand functionc(V) from Eq. ~10! into the power
series overV* /V. Ultimately, we obtain from Eqs.~8! and
~10!

G~V![
dV

dt S 3

4p D 2/3 w II

3DDV
*
1/3

5
V1/32V

*
1/3

c
*
2/3u ln~c* /2!uV

*
1/3S V

V*
D b21/3

, ~11!

b5
3

7
2

5

7 ln~V* /B!
2

ln 2

ln~c* /2!ln~V* /B!
,

ln~V* /B!@1.

The accuracy of the expression for growth rate~11! may
be estimated from Fig. 1~curve 1 and dots!, for the values
V/V*<104 the relative error does not exceed 5%. Curve
~Fig. 1! presents the classical growth rate of a spherical dr
let G(V);(V/V* )

1/3. The rather convenient expression~11!
allows itself to be integrated in order to analyze in expli
form the aggregate volume evolution with respect to tim
V(t).

IV. NUCLEATION KINETICS

A shift in the magnetic fluid free energyDF, caused by
the presence of a new phase nucleus, may be written as
lows @33,35#:

DF5E
V02V

F f 1~w1 ,H1!1
1

2
M1~H12H0!GdV

1E
V
F f 2~w2 ,H2!1

1

2
M2~H22H0!GdV

2 f 1~w` ,H0!V01sS,

~12!

where f is a free energy density, andV0 is the total volume
of a metastable system. In the case of a highly elonga
aggregate, by using the assumptionH1'H2'H0 ~Sec. III!,
we get the expression for minimal work of nucleus formati
@24,35#

A'2V
w II

w I

kT

v
D1sk~c!V2/3, ~13!

wherek(c)5S/V2/3. The microaggregate will be at quas
equilibrium if the equality]A/]V50 holds true. Hence, this
equality leads to the expression for critical volume

V
*
1/35

2

3

v
kT

w I

w II

sk~c* !

D
. ~14!

Equations~14! and ~3! allow us to calculate the volume o
critical nucleusV* and corresponding ratio of ellipsoid sem
axis c* .

te
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A separating magnetic fluid is characterized by the f
lowing typical values of parameters: ferroparticle diame
d;10–20 nm; interfacial tensions;~5–10!31024 erg/
cm2 @6,7,9,30–32#; external field strengthH0;10–100 Oe;
volume concentrations of coexisting phasesw I;0.01–0.05,
w II;0.2–0.4; magnetic permeabilities of phasesm I;1–2 ,
m II;20–40@7,20,36#; and temperatureT'300 K.

Thus, for real degrees of supersaturationD;1022 we
obtain the values of critical nucleus volumeV*;~100–
1000! v and the semiaxis ratioc*;0.04–0.07. The critical
aggregate contains several tens or hundreds of ferropart
and is high elongated (c*!1). It should be noted that criti
cal volume is a drastically decreasing function of magne
field strength.

Expressions~14! and ~8! must evidently lead to coincid
ing values of critical volumeV* . Doing so, the effective
averaged parameters̄ ~7! may be determined. By expandin
A(V1/3) in Taylor a series near the pointV1/35V

*
1/3 we ob-

tain, accurately to terms of the second order in the supers
ration inclusively, an expression

A'
sk~c* !

3
V
*
2/32sk~c* !~V1/32V

*
1/3!21••• ~15!

for the minimal work necessary to form a nucleus whi
differs from the classical one by the presence ofk(c* ) . The
latter represents the slow function ofV* .

Equation~15! strikingly resembles a familiar expressio
of the classical Zel’dovich’s theory of nucleation@35#. When
building this relation, both spontaneous origination of init
nuclei and the probability of their passing over the critic
potential barrier can be treated quite similarly to the tre
ment specific to molecular systems. Omitting standard ca
lation, we are able to write a conclusive expression of
nucleation rate as@24,35#

J5C
w Iw II

v2 S kT

sk~c* ! D
1/2

lim
V→V

*

S 1

V1/32V
*
1/3

dV

dt D
3expS 2

sk~c* !

3
V
*
2/3D , ~16!

C being a numerical coefficient which could not be e
pressed in terms of macroscopical variables and param
in principle. Formula~16! defines the mean number of s
percritical nuclei arising during unit time per unit volume
a magnetic fluid and is subject to the common restrictio
characteristic of the theory of generation of stable molecu
nuclei of a new phase by Zel’dovich. As in the last case, t
formula is of logarithmic accuracy since the factor cannot
expressed through macroscopic parameters and so rem
undeterminable. It is obvious, nevertheless, that the influe
of the supersaturation on the nucleation rate is controlled
an exponential factor

J;Dexp@2E~D!#, E~D!5
4

27Fsk~c* !

kT G3S w Iv
w IID

D 2,
k~c* !3'

9p4

16c*
, c*!1, ~17!
-
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where the physical meaning ofE is that of a relative activa-
tion energy for the formation of a single critical nucleus r
ferred to the actual supersaturation. In the case of sphe
nucleik(c* )5(36p)1/3 the nucleation rate~17! becomes the
classical one. Using the typical values of parameters in
~17! gives us the order of value of activation ener
E;10–50. Taking into account the dependences
w I ,w II ,c* on magnetic fieldH0 , the analysis of Eq.~17!
comes to the conclusion that nucleation rateJ increases
sharply under the strengthening of an external field. In ot
words, the process of phase separation in magnetic fl
goes on more rapidly in the presence of a higher magn
field. This result is confirmed by all known experiment
evidences@4–9,21,22,30#.

Expressions~8! and ~11! for the aggregate growth rat
dV/dt, Eq. ~14! for the critical nucleus volumeV* and Eqs.
~16! and ~17! for the nucleation rateJ completely describe
the kinetics of the phase separation process at the nucle
stage. In order to illustrate the results obtained we choose
following parameters as meaningful representatives of pr
erties of the nucleation process in magnetic fluids. First,
nucleation rate is determined for the largest part by a dim
sionless activation energyE @see Eq.~17!# which offers an
effective height of the potential barrier to be overcome b
nucleus to ensure its subsequent growth. Second, a dim
sionless volumeV* /v and semiaxis ratioc* of the critical
microaggregate, as well as the total number of particlesN*
being contained in that microaggregate, are of great sign
cance. These parameters depend, above all, upon the i
supersaturationD05w02w I of the original magnetic fluid.

Dependence of the mentioned parameters on the exte
field strengthH0 is presented in Table I. Equilibrium con
centrationsw I and w II of coexisting ferrocolloidal phase
were determined for variousH0 on the basis of first-orde
hard sphere perturbation theory@17,18,20,36#. For given ini-
tial concentration~for example,w050.045) strengthening o
a magnetic field leads to an appreciable increase in su
saturation. Respectively, the critical volume, number of p
ticles per critical aggregate, and activation energy prov
the sharply decreasing functions of an external field stren
This is fully understandable because a magnetic fi
strengthening means an increase in the degree of metas
ity of the parent magnetic fluid which lowers the volume
critical nucleus and raises the probability of its formatio
Nevertheless, the height of the energy barrier is such a
yield rather large values ofE at reasonable supersaturation
Both V* /v andN* are also large compared with unity, s
that the critical microaggregate contains tens or hundred
particles when the supersaturation is sufficiently low.

V. INTERMEDIATE STAGE: BASIC EQUATIONS

Let us next study the evolution of a system of dropli
ellipsoidal aggregates suspended in a macroscopically ho
geneous metastable magnetic fluid during the intermed
stage of phase transition under the conditions when both
reduction in metastability~the decrease in the parent ferr
colloid supersaturation! and the continuing initiation of new
nuclei in the metastable surroundings are taken into acco
The growing aggregates are distributed over volume and
distribution densityf (t,V) is governed by a kinetic equatio
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TABLE I. Dimensionless activation energyE, number of particles per critical aggregateN* , critical
value of aggregate volumeV* related to ferroparticle volumev, and semiaxis ratio for critical aggregat
c* as functions of external field strengthH0 for a magnetic fluid with initial volume concentratio
w050.045; equilibrium concentrationsw I ,w II and the corresponding values of the Langevin param
a5mH0 /kT are also shown.

H0 ~Oe! a w I w II D c* V* /v N* E

51 1.42 0.038 0.264 0.007 0.046 5.13103 1.33103 128
53 1.47 0.035 0.270 0.010 0.052 1.83103 489 65.7
55 1.53 0.032 0.275 0.013 0.055 839 231 40.7
57 1.58 0.030 0.280 0.015 0.057 454 127 28.1
60 1.67 0.028 0.287 0.017 0.058 220 63 18.3
65 1.80 0.024 0.299 0.021 0.059 83 30 10.5
70 1.94 0.022 0.307 0.023 0.059 45 14 7.3
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]

]VS dVdt f D50, t.0, V.V* , ~18!

under complete neglect of fluctuations of the diffusiona
controlled growth rate of a single aggregate. We presume
function f (t,V) to be normalized to the number concentr
tion N(t) of the aggregates. The determination of the qu
tity dV/dt as a function of aggregate volumeV and actual
value of absolute supersaturationD has been the objective o
Sec. III @see expressions~8! and ~11!#.

Initial and boundary conditions imposed upon physica
meaningful solutions of Eq.~18! are of the form

dV

dt
f uV5V

*
5J@D~ t !#5CD~ t !expF2E

D0
2

D~ t !2G , f ~0,V!50.

~19!

The above representation of the nucleation rateJ results
from Sec. IV@see expression Eq.~17!#. HereC'const,D0 is
an initial value of the supersaturation, andE[E(D0) stands
for the dimensionless activation energy referred to as in
supersaturation. The quantityE is commonly much larger
than unity and depends on a magnetic field strength~see
Table I!.

In order to close the set of equations~18!, ~19!, and~11!,
it is necessary to define the supersaturation as a functio
parameters specific to an assemblage of growing aggreg
A requirement of conservation of the overall number of f
roparticles in the system under study leads to the mass
ance equation

D~ t !5D02w II E
V
*

`

Vf~ t,V!dV, D~0!5D0 . ~20!

Since the characteristic volume of aggregates during
intermediate stage of their growth considerably exceeds
volume of the critical nucleus, it is permissible to regard t
latter quantity as negligibly smallV1/32V

*
1/3'V1/3 in ex-

pression~11!. It is consistent with the neglect of possib
coalescence processes specific to this stage. The aggr
distribution density is clearly little affected by this simplifi
cation only in the vicinity of the pointV;V* , but it does
not change in the region of interestV@V* .

The set of equations~18!–~20! and~11! includes only two
external dimensionless parameters: the mutual diffusi
he
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-

l
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-
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e
e
e

ate

y

D and the nucleation rateJ. They enable us to construct tim
and volume scalest0 andV0 intrinsic to the evolution pro-
cesses under study

V05F S 4p

3 D 2/3DD0

w II J0

3

c
*
2/3u ln~c* /2!uV

*
b21/3G1/~22b!

,

t05
1

J0V0
, J05J~D0!. ~21!

It is also convenient to introduce dimensionless variables
parameters according to the relations

F~t,s!5V0
2f ~ t,V!, s5

V

V0
, t5

t

t0
, v~t!5

D~ t !

D0
,

q5
w II

D0
. ~22!

Equations~18!–~20! and~11! in dimensionless variables~22!
are

]F

]t
1v~t!

]

]s
~Fsb!50, t.0, s.0,

ds

dt
5sbv~t!,

~23!

F~0,s!50, Fsbus505exp@Eg~t!#, g~t!512v~t!22,

v~t!512qE
0

`

sF~t,s!ds, v~0!51. ~24!

It is this set that is investigated in the remainder of the pap

VI. INTEGRAL EQUATION
FOR THE SUPERSATURATION

Let us introduce the new functions

u~t,s!5sbF~t,s!, u~t!5E
0

t

v~t8!dt8. ~25!
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From Eqs.~23! we get a boundary problem foru(t,s)
which can be solved with the help of a method of charac
istics. This solution, satisfying the initial conditions, can
written in a form

F~t,s!5s2bu„u~t!2y~s!…H„u~t!2y~s!…,

y~s!5E
0

s

x2bdx5
s12b

12b
, ~26!

whereH(z) is the Heaviside step function, and the functi
u(z) satisfies the boundary condition~23!

u@„u~t!…#5exp$E@12v~t!22#%. ~27!

The characteristics of the partial differential equation~23!
gives us the value at a timet of dimensionless volume
s(t,j) of an aggregate that appeared at a momentj

y@„s~t,j!…#5
s~t,j!12b

~12b!
5u~t!2u~j!,

sm~t!5s~t,0!5@~12b!u~t!#1/~12b!. ~28!

Heresm(t) can be considered as a maximal volume of a
gregates. In order to make use of Eqs.~26! and~27! we need
to know a functional dependence of the dimensionless su
saturationv(t) on the functionu(t) defined in Eq.~25!.
This dependence has to be found by means of substitu
F(t,s) Eq. ~26! into the mass balance equation in Eq.~24!.
Changing the inegration variables to z according to Eq.~28!

y~s!5u~t!2z, dy~s!5s2bds52dz,

s50→z5u~t!, s5sm~t!→z50,

and using Eqs.~27! and~28! we get an integral equation fo
the dimensionless supersaturation as a function ofu

v@„u~t!…#512QE
0

u~t!

@u~t!2z#1/~12b!

3exp$E@12v~z!22#%dz, ~29!

Q5q~12b!1/~12b!;5210.

This equation describes the dynamics of changes in the
persaturation caused by the growth of aggregates.

VII. KINETICS OF THE METASTABILITY REDUCTION

The supersaturation is governed by the strongly nonlin
functional integral equation given in Eq.~29!, which could
hardly be handled to yield an exact solution in an expl
form. However, there is a large parameter in the exponen
the integrand in Eq.~29!, due to the fact that the dimension
less activation energyE of the critical nucleus formation is
much larger than unity. Since the functiong(t) defined in
Eq. ~23! is negative, a sharply decreasing function shows
in that integrand, and this gives the opportunity to get
approximate solution. The same approach is common in
theory and has been developed using the iteration metho
r-
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ng

u-

ar

t
of
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in

Ref. @27# and Laplace’s method in Refs.@28,29#. At small
dimensionless times we get from Eq.~29! asymptotic esti-
mates

v~z!'1, g~z!'0, v~u!'12
Q

d
ud,

d5
22b

12b
'
11

4
, ~30!

the region of validity of which is obvious:u!(d/Q)1/d. The
time dependence ofv(t) can be estimated by using th
equalityu(t)'t following from Eq. ~25! at smallt.

At sufficiently largeu an approximate solution of integra
equation~29! may be obtained under the conditions when t
large values of parameterE is taken into account. SinceE is
larger than unity and the functiong(z) is negative~23!,
exp@Eg(z)# is rapidly decreasing asz is growing. This shows
that the main contribution to the integral in Eq.~29! is given
by the nearest vicinity of the pointz50, which permits ex-
pansion of the slowly changing function (u2z)1/(12b) in a
Taylor series. Following@29# we get

v~u!512QE
0

uFu1/~12b!2
1

12b
ub/~12b!z1••• G

3exp@Eg~z!#dz. ~31!

For the reasons given, the above integrals converge v
quickly, which allows both the upper limit of integration t
be put equal to infinity and small times asymtotics~30! to be
used forv(z). Therefore, it is easy to obtain an approxima
expression

v„u~t!…512«1u~t!g1«2u~t!g211•••,

g51/~12b!'7/4, ~32!

«15QE
0

`

exp@Eg~z!#dz, «25QgE
0

`

z exp@Eg~z!#dz,

g~z!512S 12
Q

d
zdD 22

,

which is valid at sufficiently large times after the beginnin
of the evolution process. Coefficients« j can be approxi-
mately calculated with the help of the Euleriang function
G(z)

«1'
Q

d S d

2EQD 1/dGS 1d D'0.99~E24Q7!1/11;121.5, ~33!

«2'
Qg

d S d

2EQD 2/dGS 2d D'0.95~E28Q3!1/11;0.1–0.2.

It can be readily demonstrated that not on
«2/«1'(EQ)24/11!1, but also « j11 /« j!1 at any
j51,2, . . . . Itjustifies using merely a few initial terms in th
series in Eqs.~31! and ~32!. The differential equation
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du(t)/dt5v(u) results from Eqs.~25! and~32!. Its solution
at the evident initial conditionu(0)50 is

t5E
0

u~t! du

12«1u
g1«2u

g21 . ~34!

Asymptotics ~32! and ~34! are adequate at sufficientl
large u(t) . A corresponding estimate gives the followin
restriction imposed on this function from below Eqs.~32!
and ~34! to be valid:

u~t!.~d/2EQ!1/d'1.1~EQ!24/11'«2 /«1!1.

Thus we have obtained a pertinent approximate solution
the integral equation in Eq.~29! that determines relative su
persaturationv(t) as an implicit function of dimensionles
time u(t).

It is worth noting that the usage of further terms of t
series in Eq.~32! is impossible in a straightforward wa
because it would give rise to terms with negative expone
of the type ofug2n, n52,3, . . . ,g2n,0, which diverge as
t goes to zero. This is due to violation of the necess
conditions of the transition from Eq.~31! to Eq. ~32! and, in
particular,« j cannot be regarded now as independent oft .
Allowance for such a dependence brings about a correct
somewhat cumbersome mathematical problem, instead o
one that has been studied.

The behavior of functionv(t) in conformity with ap-
proximate formulas~32!–~34! is demonstrated in Fig. 2. I
agrees sufficiently well with results of an exact numeri
solution of the integral equation in Eq.~29! which are shown
in Fig. 2 by dots. This proves the above approximation to
reasonably correct. In compliance with the developed the
the supersaturation entirely vanishes for a finite valueu* that
can be presented, by virtue of Eq.~34!, through the approxi-
mate relation

u*5«1
21/g1

1

g

«2
«1

1OS S «2
«1

D 2D . ~35!

FIG. 2. Time dependence of the dimensionless supersatura
v(t)5D(t)/D0 ~curves 1, 2, and dots! and dimensionless aggrega
concentrationn(t)5N(t)V0 ~curve 3! for a metastable magneti
fluid characterized by the activation energyE518.3 ~see Table I!;
dots, numerical solution of the integral equation~29!; curve 1, ap-
proximate expressions~32!–~34!; curve 2, small time asymptotic
~30!.
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This inference is surely inaccurate because it ignores
processes of particle redistribution between the aggrega
which have much in common with the coalescence and
condensation processes in two-phase molecular systems
latter processes affect the final stage of the new phase
mation in the molecular systems and the Ostwald ripen
process in colloidal systems and should be accounted
during this late stage. A kinetic theory of Ostwald ripening
magnetic fluids represents an important but rather diffic
problem. In many respects it is caused by the strong ani
ropy of the droplike aggregates and the tip effects@5#.

Equation~35! permits an estimate of the duration of th
intermediate stage of phase transition studied here to
made as

um'«1
21/g5«1

b21'«1
24/7'~E16/77Q24/11!. ~36!

Values oftm corresponding to Eqs.~35! and ~36! are to be
found in accordance with the definition ofu in Eq. ~25! and
with allowance for the representation ofv(t) in Eq. ~32!.

VIII. INTEGRAL CHARACTERISTICS OF A
SYSTEM

OF AGGREGATES

The evolution of a system of growing aggregates c
sometimes be described, with sufficient accuracy, with
help of moments of the aggregate size distribution. Amo
those moments are the number concentrationN(t) of the
aggregates and the mean dimensionless volume^s(t)&

n~t!5N~ t !V05E
0

`

F~t,s!ds5E
0

u~t!

exp@Eg~z!#dz, ~37!

^s~t!&5
1

n~t!
E
0

`

sF~t,s!ds

5
~12b!g

n~t!
E
0

u~t!

~u2z!gexp@Eg~z!#dz,

n(t) being the number of aggregates within the volum
V0. At small times we obtain, similarly to Eq.~30!,

n~t!'u~t!'t!1, ^s~t!&'~12b!gu~t!g/d. ~38!

At large times, when Eq.~32! is approximately valid, we
have

n~t!'S d

2EQD 1/d G~1/d!

d
5

«1
Q

'0.99~EQ!24/11, ~39!

^s~t!&'~12b!g@u~t!g2«2u~t!g21/«1#,

whereu(t) is implicitly expressed in Eq.~34!. These formu-
las are derived analogously to those in the preceding sec

Dependence on the dimensionless time ofn(t) is shown
also in Fig. 2. It can be seen thatn(t) becomes practically
constant and coincides with its asymptotic value in Eq.~39!
after a rather short period of time. This is easy to underst
because the nucleation rate represents a sharply increa
exponential function of the supersaturation and becom

on
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negligible when the latter quantity falls below a certain lev
After that, new critical nuclei cease to occur, and the evo
tion proceeds at the expense of diffusion exchange by
ticles alone. As is seen from Fig. 2 the process of format
of new supercritical nuclei@an increase in aggregate conce
tration n(t)# goes on during the period of time when th
small time asymptotic solution~30! is adequate~see curves 2
and 3!. This result lends support to the validity of using th
small time asymptotics~30! in exponent function in the in-
tegral equation~31!.

Time dependence of the mean volume of the aggregat
illustrated in Fig. 3. At the end of the intermediate stage
the evolution~that is, att'tm), the mean aggregate volum
reaches its maximal value that can be shown to be equa

^s~tm!&'«1
21'0.43~E4Q27!1/11.

The reduction of metastability during the intermediate sta
is formally attended with the increasing of the critic
nucleus volumeV* (t);D(t)23 and s* (t);v(t)23. Such
expected dependence is shown in Fig. 3~curve 2!. Dimen-
sionless critical volumes* (t) is much less than the mea
volume ^s(t)& everywhere over the region of timet,tm .
This gives proof to the neglection of the recondensation p
cess during the intermediate stage of phase transition.

IX. EVOLUTION OF THE VOLUME
DISTRIBUTION DENSITY

The volume distribution density is obtained in dimensio
less form in Eqs.~26! and ~27! and is fully determined if
v(t) and, consequently,u(t) are known. This is why the
above results concerning the decline of the supersatura
allow F(t,s) to be calculated as a function of dimensionle
time and of relevant parameters. When the large time asy
totics ~34! is adequate, the distribution density can be writt
in the form

F~t,s!5s2bexp$Eg@u~t!2y~s!#%H@u~t!2y~s!#, ~40!

g~z!512~12«1z
g1«2z

g21!22,

FIG. 3. Time dependence of the maximum aggregate volu
sm(t) ~28! ~curve 1! and the mean aggregate volume^s(t)& ~39!
~curve 2! in comparison with the expected time dependence of
critical aggregate volumes* (t);v(t)23 ~curve 3!.
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where the functiony(s) is defined in Eq.~26! and the func-
tional relation betweent andu(t) is given by Eq.~34!.

The evolution of the dimensionless distribution density
presented in Fig. 4, where the measure of the area unde
curves is equal to the dimensionless aggregate concentr
n(t). At small times the distribution density is a very hig
and narrow function of the dimensionless aggregate volu
This is bound up with the active nucleation process at
beginning of the intermediate stage. After the period of co
tinuing initiation of new nuclei the aggregate concentrati
in the system becomes constant~see curve 3, Fig. 2!. It
means that subsequent evolution of the distribution den
goes on under the condition that the area under the cu
remains constant. As is clear from expressions~23! the vari-
ous points of the functionF(t,s) move towards the right in
Fig. 4 ~i.e., in the space of dimensionless volumes! at a rate
ds/dt. Since the rate of such a motion is an increasing fu
tion of dimensionless volumes, then the functionF(t,s)
spreads. This means that the volume distribution density
the aggregates is characterized by an increasing disper
In accordance with this, the maximum value of the functi
F(t,s) is a decreasing function ofs ~see curves 1–3, Fig. 4!.

X. DISCUSSION

To sum up we are able to describe with high accuracy
purely analytical methods, with merely occasional applic
tion of simple numerical methods, the initiation and sub
quent evolution of the system of droplike ellipsoidal agg
gates in a magnetic fluid under the presence of an exte
magnetic field. Essentially the same approach could be
plied to numerous processes of new phase formation in
lecular and colloid systems. As compared with the latter,
magnetic field induced phase separation in magnetic fluid
essentially controled by the mutual relation between the v
ume of an aggregate and its shape. An elongation of
aggregate during its growth is accompanied by an increas
both the interfacial surface and the concentration gradien
the vicinity of the side surface. The latter is caused by
relative decrease~as compared with that for a sphere! of the
transverse size of the ellipsoid. Consequently, the aggre
elongation results in a higher value of growth rate in co
parison with that of spherical droplets. On the other hand,
large aggregate surface hinders the process of formatio
initial aggregates and tends to an increase of the crit

e

e

FIG. 4. Dimensionless distribution density at subsequent t
moments:u5um /2 ~curve 1!, 3um /4 ~curve 2!, andum ~curve 3!.
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nucleus activation energy. Nevertheless, the rate of nu
ation and the kinetics of the intermediate stage of phase t
sition go on more rapidly in a magnetic fluid made me
stable by an external field. This is due to the fact that a sm
strengthening of the magnetic field implies a significant
crease of initial supersaturation~see Table I!. The latter ex-
erts primary control over the kinetics of the phase separa
process.

The validity of the developed theory is somewhat
stricted by certain underlying conditions imposed on char
teristic time scales of involved processes, as well as on
sizes of aggregates and nuclei which might be considere
a basis of classical thermodynamics. These conditions
ensuing restrictions are essentially the same as those in
theory of nucleation in molecular systems and, thereby,
hardly worth discussing them in this paper. We would lik
nonetheless, to place emphasis upon the most seriou
quirement that the critical nucleus should be sufficien
large to be regarded both as a macroscopic object liable t
explored with the help of conventional methods of classi
thermodynamics and as a highly elongated ellipsoid w
semiaxis ratioc*!1 ~see Table I!. The last requirement is
surely fulfilled for a magnetic fluid, except for a region
very high initial supersaturations. In the opposite case
very high relative supersaturation, only a few particles s
fice to originate the critical nucleus, and the above meth
are not likely to be appreciable without appropriate mod
cation. In this case, methods founded on an analysis of
kinetics of the attachment of new particles apparently hav
be used and the fractal nature of clusters and the resu
microaggregates ought to be accounted for.

The continuing nucleation plays a role only at an ea
phase of the intermediate stage because of an abrupt dr
the nucleation rate caused by a seemingly insignificant
crease in the supersaturation.@If a transient value of the su
persaturation is only 5% smaller than the initial one, this r
can be proved to be diminished by a factor exp(0.1E), which
can be quite tremendous at largeE.# After that the nucleation
may be neglected. General evolution laws happen to be
versal in the case of the diffusion kinetics of phase separa
when expressed in terms of the special time variableu(t),
defined in Eq.~25!. These universal laws for the diffusio
limited aggregate growth in the small and large time asym
totics have the form

v~u!'12Qud/d, ^s~u!&;ug, n~u!'u,

u!~d/Q!1/d,
e-
n-
-
ll
-

n

-
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e
on
nd
the
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,
re-
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e
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v~u!'12«1u
g1«2u

g21, ^s~u!&;~ug2«1u
g21/«2!,

n~u!'~QE!21/d,

«1'Q~EQ!21/d, «2'Q~EQ!22/d, um'«1
21/g ,

u.«2 /«1 ,

both for the magnetic fluid phase separation induced by
external field, and for the phase separation of a colloid m
metastable by a fall of temperature or an increase in the io
strength of a solvent@24,29#. All the differences consist in
the various values of exponentsd and g. In the case of
magnetic field induced phase separation we get, from S
VII: g'7/4, d'11/4. When the phase separation tak
place under the absence of an external field, the corresp
ing value of exponents were determined in Ref.@29#:
g53/2, d55/2.

The pertinent volume and time scales of the evolut
process equalV0 andt0 defined by Eq.~21!. The first scale is
representative of the ultimate volume of an aggregate
tained at the end of the intermediate stage of the evolut
Similarly, t0 has the meaning of the period of time durin
which the supersaturation falls to zero. Measurements
those scales in the actual phase separation process he
enable one to judge the nucleation rateJ. Emergence of ag-
gregates affects rheological, thermophysical, and other p
erties of magnetic fluids to an extremely considerable ext
their evolution making those properties time dependent.
using the corresponding methods of the macroscopic the
of multiphase and heterogeneous media, the time evolu
of such properties may be predicted with the help of
known aggregate distribution density~40!.

Unfortunately, the authors have failed to find reliable e
periments on the kinetics of the phase separation proces
magnetic fluids checked against the developed theory. H
ever, it seems to be certain that the theory is implicitly c
roborated by the general bulk of available experimental e
dence. Moreover, there is an excellent agreement of a sim
theory @28# with some experiments on batch crystallizatio
which lends additional support to the present theory.
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